原理其实非常简单:
飞行器的运动信号通过传感器输入到控制系统,控制系统产生的控制信号又输入到作动器上面引起控制面的偏转,控制面偏转产生的控制力最后回馈到飞行器上面,进而抑制系统的不稳定振动。
所以也叫作颤振主动抑制。
这个思路的最大好处在于,完全无需对机翼设计进行修改,只要升级飞控和传感器就行。
根据后世的经验,把颤振临界速度提高10左右不成问题。
而他现在要做的,就是把记忆中的这一切给复现出来!
……
时间一分一秒过去,常规的早饭时间过去之后,办公室里又走进来了几个人。
方振简单地进行了一番介绍,不过此时常浩南的思路已经沉浸在桌上铺开的资料中,只是简单地打了个招呼就继续低头在草稿纸上写写算算起来。
因为他发现,资料中提供的机翼设计,潜力远比自己之前想象的更大!
“很有想法啊……”
眼前这个机翼相比于真正安装在新舟60上的那个机翼更轻、展弦比更大并且还带有一个翼梢小翼。
这意味着更低的飞行阻力、更快的飞行速度和更低的油耗。
对于一架准备用于商业运营的客机来说,这就是最核心的竞争力。
当然,作为代价,这样的机翼气动特性更加复杂,设计难度和风险更大,也更容易发生颤振。
或许正是因为这样的原因,在前一世,新舟60最终选择了原来的保守方案。
但是现在,这样的遗憾不会再发生了!